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Abstract: The main topics covered in Mauricio (2006) are further developed with an analytical proof of 
an important theoretical result (Section A.1) and an additional example using actual data (Section A.2). 
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A.1. STATIONARY REPRESENTATION OF A BIVARIATE 

PARTIALLY NONSTATIONARY VAR(1) MODEL 

 

 Consider a stochastic process following the VAR(1) model 1 1t t t Y Y A  with T
1 2[ , ]t t tY YY  

(so that M = 2), i.e., 
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 Model (A.1) satisfies the partial nonstationarity assumptions given in Section 2 of the main article if 
and only if the two roots of |I�−�Φ1x|=�0 are such that x1=1 (one unit root) and |x2|>1 (so that D = 
1), i.e., if and only if the two eigenvalues 1

ixi   ( 1, 2i ) of the autoregressive matrix 
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  (A.2) 

in (A.1) are such that μ1=1 and |μ2|<1. 

 Under the mentioned assumption on (A.2), it can be seen that the matrix 
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I   (A.3) 

has one eigenvalue (1−μ1) equal to zero and the other one (1−μ2�) different from zero. Hence, the VEC 
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representation 1t t t  Y Y A  for (A.1) has the property that rank[ ] 1M D   , and Π can 
be written as displayed in equations (4) and (6) of the main article, i.e., 

 1 1 1 2T
2

2 2 2 2

[1, ]
   


   

  
       

B  . (A.4) 

 If the general transformation described in Section 3 of the main article is applied to the VEC form of 
(A.1), it follows from equations (15)-(17) that 1 1

1( )t t t
 

  C Y C H Y A , i.e., 

 1( )t t t  Y H C Y CA , (A.5) 

where 
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Y H C   

 It is now shown that under the partial nonstationarity assumption imposed on (A.2) and represented 
explicitly in (A.4), the two eigenvalues of 

 2

1 2 2

0

0 1



  

 
    

H C  (A.6) 

are less than one in absolute value, which implies that (A.5) is a stationary VAR(1) model for }tY{ . 

 First, note that the two eigenvalues μ1 and μ2 of (A.2) satisfy the following two equations: 

 1 1 2 11 22trace[ ]        , (A.7) 

 1 1 2 11 22 12 21| |=       . (A.8) 

 Hence, μ1=1 implies from (A.7)-(A.8) that 

 2 11 22 11 22 12 211           , (A.9) 

showing that the four elements of Φ1 in (A.2) must satisfy certain specific restrictions for partial 
nonstationarity to hold. In particular, |μ2|<1 and the first part of (A.9) imply that 

 11 22| 1|< 1   . (A.10) 

 Second, note that (A.3)-(A.4) imply that 11 22trace[ ] (1 ) (1 )       1 2 2   , i.e., 

11 22 1 2 21 1         . It follows from this equation and equation (A.10) that 

 1 2 2|1 |< 1    . (A.11) 

 Finally, note that the two eigenvalues of the autoregressive matrix (A.6) are zero and 1−λ1−λ2�β2. 
Hence, (A.11) implies the claimed result that (A.5) is a stationary VAR(1) representation for the partially 
nonstationary model (A.1), which illustrates the general result following equations (15)-(17) of the main 
article. 
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A.2. THE CENSUS HOUSING DATA 

 

 Building adequate time series models for seasonally unadjusted monthly data presents some 
peculiarities that conditional estimation methods often do not handle satisfactorily. This example 
illustrates the following important points: (i) As in the case of stationary models, EML estimation is 
clearly preferable to CML in the case of cointegrated systems with possibly noninvertible moving average 
terms (especially for seasonal models), and (ii) joint and reliable EML estimation of both cointegrating 
terms and such moving average terms is possible by using the methods described in Section 3 of the main 
article. 

 The data used in this example consist of monthly U.S. single-family housing starts (�xt1�) and houses 
sold (�xt�2�) over the period January 1965 through May 1975. These data have been considered recently by 
Mélard et al. (2006, Example 4), Reinsel (1997, Examples 6.4 and 6.6), and Tiao (2001) (who refers to 
them as the “Census Housing Data”). Point (i) above is illustrated somehow in the last two works, 
although the possibility mentioned in point (ii) above is considered in none of the three at all. 
Additionally, the present example illustrates the possibility of estimating common trends in cointegrated 
systems as a byproduct of EML estimation of a suitable VEC model. 

 The original (seasonally unadjusted) data shown in Figure A1 exhibit strong seasonal behavior, and 
so the seasonal differences 12

1 1(1 )t ty L x   and 12
2 2(1 )t ty L x   are considered for further 

modeling. The seasonally differenced data are displayed in Figure A2, from which it can be seen that 
T

1 2[ , ]t t ty yy  is a nonstationary series such that T
1 2[ , ]t t ty y   y  is stationary. Formal unit root 

tests can be shown to confirm clearly this conclusion obtained by simple visual inspection of the data. 

 Hence, following Reinsel (1997, Example 6.6) and Tiao (2001), a model of the form 

 12
1 1( ) ( )t tL L  I Y I A   (A.12) 

has been estimated with the bivariate time series T
1 2[ , ]t t ty yy  shown in Figure A2, and the 

possibility that the 2×2 matrix Π=I−Φ1 in the corresponding VEC model 

 12
1 1( )t t tL   Y Y I A   (A.13) 

be of reduced rank (either P = 0 or P = 1) has been considered. 

 Table A1 summarizes the estimation results for model (A.12) obtained through EML and CML 
(where a few parameters have been set to zero because they were clearly insignificant in a previous 
estimation run). These results suggest the possibility that Π in (A.13) has a single zero eigenvalue (i.e., 
that |I−Φ1|=�0 has a single unit root), implying that the two series shown in Figure A2 are 
cointegrated. To explore this possibility formally, tests based on likelihood ratio statistics have been 
considered. The tests for the various hypotheses are displayed in Table A2. 

 The results in Table A2 indicate that the hypothesis of P = 0 (or D = 2 unit roots) is strongly 
rejected, and that the hypothesis of P = 1 (or D = 1 unit root) cannot be rejected. Thus, the likelihood 
ratio test procedure leads to the conclusion that there is one cointegrating vector and one unit root (i.e., 
one common stochastic trend) in the bivariate model considered. 
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Figure A1. The Original (Seasonally Unadjusted) Census Housing Data (in thousands) over the Period 
January 1965 through May 1975. 

 
 
 
 
 
 
 
 
 

Figure A2. The Seasonally Differenced Census Housing Data (in thousands) over the Period 
January 1966 through May 1975. 

 Note that both EML and CML lead to the same conclusion, and that this is also the conclusion 
obtained by Reinsel (1997, Examples 6.4 and 6.6) and by Tiao (2001), who also describe the implications 
of the possible unit root structure in the seasonal moving average operator (i.e., the implications of the 
possibility that Θ1=I�), that is clearly present when EML estimation is employed (see Table A1) as 
opposed to the results obtained through CML. 

 After the results in Table A2, it seems natural to estimate the VEC model (A.13) under the 
restriction that P�=�rank(�Π�)�=�1 (�i.e., that Π�=�ΛBT�), in which case (see Section 2) (A.13) can be 
conveniently rewritten as 

 T 12
1 1= ( )t t tL   Y B Y I A  , (A.14) 

where Λ=�[λ1,�λ2]
T is a vector of adjustment factors, and B�=�[1,�β2]

T is the (normalized) cointegrating 
vector. Table A3 summarizes the estimation results for model (A.14) obtained through both EML and 
CML (where the same insignificant parameters than those in Table A1 have been set to zero); see also 
Figure A3 for a brief diagnostic of the estimated model. 

 The results given in Table A3 indicate that although the estimated partially nonstationary structure of 
the VEC model (A.14) is virtually the same irrespective of the estimation method employed, the 
estimated seasonal moving average and error covariance structures are quite different. In particular, EML 
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Table A1. Estimation Results for Model (A.12): Seasonally Differenced Census Housing Data. 

 Exact Maximum Likelihood [†] Conditional Maximum Likelihood [†] 

1̂  

0.4753 0.9306

(0.0730) (0.1359)

0.0974 0.7648

(0.0463) (0.0863)

 
 
 
 
  

 

0.5033 0.8408

(0.0743) (0.1341)

0.1251 0.7109

(0.0463) (0.0837)

 
 
 
 
  

 

1̂  

0.9641 0.0000

(0.1480)

0.0000 1.0844

(0.1870)

 
 
 
 
  





 

0.7309 0.0000

(0.0741)

0.0000 0.7012

(0.0748)

 
 
 
 
  





 

̂  
29.2020

5.5274 10.3041

 
  

 
38.1903

6.7457 15.2644

 
  

 

Eigenvalues of 1
ˆ ˆ I   0.0460, 0.7140  0.0523, 0.7335  

Log-likelihood 663.4662  669.9050  

AIC, BIC 12.0083,12.2268  12.1233,12.3418  

[†] Standard errors in parentheses. 

 
Table A2. Tests on the Rank P of Π in Model (A.13) [i.e., on the Number D of Unit Roots of 1| |= 0xI   in 

Model (A.12)] Based on Likelihood Ratio Test Statistics. 

Hypotheses Likelihood Ratio Test Statistic [†] Asymptotic p-value 

Exact Maximum Likelihood: 

0

1

: 0  ( 2)

: 1 ( 1)

H P D

H P D

 

 
 E E2 [ (1) (0)] 59.2195L L     Less than 0.01% 

0

1

: 1 ( 1)

: 2  ( 0)

H P D

H P D

 

 
 E E2 [ (2) (1)] 1.5534L L     24.95 % 

Conditional Maximum Likelihood: 

0

1

: 0  ( 2)

: 1 ( 1)

H P D

H P D

 

 
 C C2 [ (1) (0)] 60.0643L L     Less than 0.01% 

0

1

: 1 ( 1)

: 2  ( 0)

H P D

H P D

 

 
 C C2 [ (2) (1)] 1.9866L L     18.70 % 

[†] E( )L P  represents the exact log-likelihood computed at the EML estimates of model (A.13) for the three 
different possible values of rank( )P    (P = 0, 1, 2). C( )L P  represents the conditional log-likelihood 
computed at the CML estimates of model (A.13) for the three different possible values of P. 
 

estimation implies (i) a possible deterministic seasonal pattern in the original (seasonally unadjusted) 
census housing data, which is not revealed through CML, as well as (ii) a substantial decrease in the 
estimated variances of the error processes with respect to CML. 
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Table A3. Estimation Results for Model (A.14): Seasonally Differenced Census Housing Data. 

 Exact Maximum Likelihood [†] Conditional Maximum Likelihood [†] 

̂  

0.5191

(0.0710)

0.1085

(0.0461)

 
 
 
 

  

 

0.4922

(0.0723)

0.1343

(0.0457)

 
 
 
 

  

 

B̂  

1 [*]

1.8625

(0.0939)

 
  
  

1 [*]

1.8223

(0.0975)

 
  
  

1̂  

0.9600 0.0000

(0.1296)

0.0000 1.1318

(0.1735)

 
 
 
 
  





 

0.7531 0.0000

(0.0663)

0.0000 0.6918

(0.0675)

 
 
 
 
  





 

̂  
29.4526

5.7112 9.9830

 
  

 
37.4868

7.0347 15.9136

 
  

 

Eigenvalues of Tˆˆ ˆ B   0 [*], 0.7212 0 [*], 0.7369 

Log-Likelihood 664.2429  670.8983  

AIC, BIC 12.0043, 12.1985 12.1232, 12.3174 

[†] Standard errors in parentheses. 
[*] Normalized or implied parameter value. 
 

 In summary, this example clearly illustrates that, as it often happens in the case of stationary 
VARMA models, EML estimation of partially nonstationary models can reveal certain important dynamic 
structure for the original data considered that cannot be seen when CML is used instead. 

 For the sake of completeness, additional issues illustrating EML estimation of common trends are 
covered now. In Figure A4(a) the linear combination series T

1 2
ˆˆ 1.8625t t t tw y y  B y  is displayed, 

representing stationary or transitory deviations of yt�=�[�yt1,�yt�2�]
T from the estimated cointegrating or 

long-term equilibrium relationship 1 21.8625Y Y  . Note from Table A3 and equation (A.14) that 
transitory disequilibria imply significant adjustments in the seasonal differences of both housing starts 
(negative) and houses sold (positive), that drive the two seasonally differenced series back to their 
cointegrating relationship. 

 Conversely, Figure A4(b) displays the series T
1 2

ˆˆ 0.2090t t t tv y y  P y , where the normalized 
2×1 matrix Tˆ [0.2090,1.0]P  satisfies T ˆˆ 0P   (see the end of Section 2), representing the 
estimated purely nonstationary common trend which is shared by the two series displayed in Figure A2. 
(Note that the two series ˆ tw  and ˆtv  have been generated using the EML estimates of Λ and B appearing 
in Table A3, which are similar to the corresponding CML estimates.)  Hence, defining the 2×2 matrix 

 
T

T

ˆ 1.0 1.8625ˆ
ˆ 0.2090 1.0

   
    
   

B
Q

P
, 
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Figure A3. Unconditional Residuals from Exact Maximum Likelihood Estimation of Model (A.14) (See Table A3). (Note: 
Residual plots are standardized.) When residual simple (ACF) and partial (PACF) autocorrelations, as well as residual cross 
correlations, are compared to the limits of 2 / 0.189N   (with N = 112 effective observations), there is no indication of 

misspecification in the estimated model. 

 

 

 

 

 

 

 

 

 
Figure A4. Estimated Transitory Disequilibria and Common Trend for the Seasonally Differenced Census Housing Data (in 

Thousands) over the Period January 1966 through May 1975. 

 

it follows that T ˆˆ ˆ[ , ]t t tw v Qy  implies that 1 Tˆ ˆ ˆ[ , ]t t tw vy Q , so that the two rows of the 2×2 matrix 

 1
0.7198 1.3406

ˆ
0.1504 0.7198

  
  

Q  

provide two sets of coefficients that allow for representing the two series displayed in Figure A2 as linear 
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combinations of the estimated disequilibrium (stationary) series ˆ tw  and the estimated common trend 
(purely nonstationary) series ˆtv  shown in Figure A4. 

 In summary, the above operations illustrate the following two general points: (i) it is possible to 
estimate through EML common trends in cointegrated systems as a byproduct of EML estimation of a 
suitable VEC model, and (ii) the nonuniqueness of the transformation given by Mélard et al. (2006, 
Section 3) may pose unnecessary difficulties for the EML estimation process, which, in fact, can be easily 
overcome through simple normalization after EML estimation whenever estimated common trends are 
required. 
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